**SET - 1** 

#### K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. II Semester (R22PG) Regular Examinations of August – 2023 SUB: EXPERIMENTAL GEOMECHANICS (GTE)

Time: 3 Hours

Max. Marks: 60

|     |     |                                                                                                                                                                                                                                  | M  | CO  | BL           |
|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--------------|
|     |     | UNIT - I                                                                                                                                                                                                                         |    |     |              |
| 1.  | (a) | What do you mean by Site investigation? What are the objectives of Site Investigation?                                                                                                                                           | 6M | C01 | LI           |
|     | (b) | How would you differ the depth of exploration and lateral extent of exploration?                                                                                                                                                 | 6M | C01 | L2           |
|     |     | (OR)                                                                                                                                                                                                                             | •  |     |              |
| 2.  | (a) | What is Reconnainace? What information is obtained in Reconnainace? What is its use?                                                                                                                                             | 6M | CO1 | L2           |
|     | (b) | Explain about the execution of soil exploration programme?                                                                                                                                                                       | 6M | CO1 | L2           |
|     |     | UNIT – II                                                                                                                                                                                                                        |    |     |              |
| 3.  | (a) | Describe open excavation methods of soil exploration. What are their advantages and disadvantages?                                                                                                                               | 6M | CO2 | L3           |
|     | (b) | With the help of neat sketch explain Wash boring method of drilling bore hole                                                                                                                                                    | 6M | CO2 | L2           |
|     |     | (OR)                                                                                                                                                                                                                             |    |     |              |
| 4.  | (a) | Describe various methods of drilling holes for subsurface exploration?                                                                                                                                                           | 6M | CO2 | L2           |
|     | (b) | Write the advantages and disadvantages of Augur boring UNIT – III                                                                                                                                                                | 6M | CO2 | L2           |
| 5.  | (a) | What do you understand about disturbed and undisturbed samples? How would you obtain undisturbed sample?                                                                                                                         | 6M | CO3 | L4           |
|     | (b) | The sampling tube 18cm internal diameter is 1mm thick. It is fitted with cutting edge. The inside diameter of cutting edge is 17.8cm and thickness of cutting edge is 2.4cm. Compute inside and outside clearance and Area Ratio | 6M | CO3 | L3           |
|     |     | (OR)                                                                                                                                                                                                                             |    |     |              |
| 6.  | (a) | Mention various types of soil samplers for obtaining soil samples? With the help of neat sketch explain Split spoon sampler                                                                                                      | 6M | CO3 | L2           |
|     | (b) | Explain the method of sampling from boreholes?                                                                                                                                                                                   | 6M | CO3 | L2           |
|     |     | UNIT – IV                                                                                                                                                                                                                        |    |     |              |
| 7.  | (a) | Discuss standard penetration test? Explain various corrections applied in SPT test                                                                                                                                               | 6M | CO4 | L2           |
|     | (b) | How would you conduct an in-situ vane shear test? What is its use?  (OR)                                                                                                                                                         | 6M | C04 | L3           |
| 8.  | (a) | Explain about in situ pressure meter test                                                                                                                                                                                        | 6M | C04 | L2           |
| •   | (b) | Explain in detail about field permeability test                                                                                                                                                                                  | 6M | CO4 | L2           |
|     | (-) | UNIT-V                                                                                                                                                                                                                           |    | ••• |              |
| 9.  | (a) | Describe in brief various geophysical methods? Discuss their limitations and uses                                                                                                                                                | 6M | CO5 | L2           |
|     | (b) | Write a note on Sub soil investigation report                                                                                                                                                                                    | 6M | CO5 | L3           |
|     | (-) | (OR)                                                                                                                                                                                                                             |    |     | <del>-</del> |
| 10. | (a) | Explain Cross Hole Tests (CHT), Down hole Tests (DHT)                                                                                                                                                                            | 6M | CO5 | L2           |
|     | (b) | Explain about Ground Penetrating Radar (GPR)                                                                                                                                                                                     | 6M | CO5 | L2           |

SET - 1

Q.P. Code: 2212202

#### K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. II Semester (R22PG) Regular Examinations of August – 2023 SUB: EARTH RETAINING STRUCTURES (GTE)

Time: 3 Hours

Max. Marks: 60

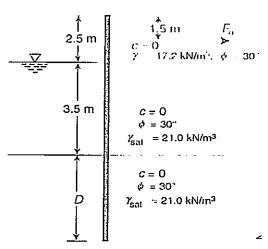
L3

Answer any FIVE Questions choosing one question from each unit.

All questions carry Equal Marks.

|    |     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M   | €O  | BL  |
|----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
|    |     | UNIT - I                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |     |     |
| 1. | (a) | Explain about the Rankine's earth pressure theory?                                                                                                                                                                                                                                                                                                                                                                                                                  | 6M  | COI | .L1 |
|    | (b) | Determine the Rankine Passive force per unit length of the wall had two layers H1=2m and H2=3m. The water tale is at level of H2 take unit weight of water is 10kN/m <sup>3</sup>                                                                                                                                                                                                                                                                                   | 6M  | COI | 1.2 |
|    |     | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |
| 2. | (a) | Differentiate critically between Rankine and Coulomb theories of earth pressure.                                                                                                                                                                                                                                                                                                                                                                                    | 6M  | COI | 1.2 |
|    | (b) | A retaining wall with a smooth vertical back retains a purely cohesive fill. Height of wall is 12 m. Unit weight of fill is 20 kN/m $^3$ . Cohesion is 1 N/cm 2. What is the total active Rankine thrust on the wall? At what depth is the intensity of pressure zero and where does the resultant thrust act?  UNIT – II                                                                                                                                           | 6M  | COI | L3  |
| 3. | (a) | Discuss about the design considerations for a mechanically stabilized earth wall.                                                                                                                                                                                                                                                                                                                                                                                   | 6M  | CO2 | L2  |
| -  | (b) | Discuss the stabilized retaining and reinforced earth retaining walls (OR)                                                                                                                                                                                                                                                                                                                                                                                          | 6M  | CO2 | L2  |
| 4. |     | Check the stability of the concrete retaining wall shown in Figure. The backfill material is a mixture of sand and gravel with the following properties: $\gamma = 19.6 \text{ kN/m}^3$ and $\phi = 33^\circ$ . The tangent of the coefficient of friction between the concrete and the soil is 0.48. The unit weight of concrete is 2.5 kN/m. The retaining wall is placed on a very dense gravelly bed with an allowable soil pressure of 380 kN/m <sup>2</sup> . | 12M | CO2 | L4  |
| -  |     | → 1 m/←                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |     |

#### UNIT-III


0.5 m

5. Discuss about the sheet piling in cohesive soils with granular backfill with a 12M CO3 L3 neat diagram. (OR)

6. A cantilever sheet pile retains soil at a height of 6m Find the depth to which the pile should be driven assuming two thirds of the theoretical passive resistance is developed on the embedded length g=19kN/m³ and =30 use approximate method

7. (a) Explain about the classification of bulkheads.
(b) Discuss the free earth support of cantilever sheet pile for clay soils
(OR)
6M CO4 13
(OR)

8. The cross-section of an anchored sheet pile is shown in Figure. Determine 12M CO4 1.4 the design depth of penetration. Use the fixed earth support method.



**UNIT-V** 

9. (a) Explain the design of various components of bracings
(b) Discuss the types of sheeting bracing system
6M CO5 L3
6M CO5 L3

12M

CO<sub>5</sub>

L4

(OR)

10. A long 5 m wide and 8 m high vertical channel has to be constructed in a deep cohesive soil with  $c = 36 \text{ kN/m}^2$  and  $\gamma = 18 \text{ kN/m}^3$ . Before protecting the sides using sheet piles, it is intended to check the safety of the bottom of the channel against heave. Consider the excavation to be completed rapidly and find the factor of safety against heave. What will be the change in the factor of safety if a hard material is present at 2.5 m from the bottom of the channel?

# K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA

M. Tech. II Semester (R22PG) Regular Examinations of August - 2023 SUB: FOUNDATIONS ON EXPANSIVE SOILS (GTE)

Time: 3 Hours

Max. Marks: 60

Answer any FIVE Questions choosing one question from each unit.

|     |     | All questions corry Fauel Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |      |
|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|------|
|     |     | All questions carry Equal Marks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.4      | <i>c</i> o | 101  |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M        | CO         | BL   |
|     |     | UNIT - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |            |      |
| 1.  | (a) | Explain about Microscale Aspects of Expansive Soil Behavior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | CO1        | L3   |
| -   | (b) | Explain Identification of Expansive Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6M       | CO1        | L2   |
|     | (~) | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |            |      |
| 2   | (~) | Explain about the natural soil deposits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6M       | CO1        | L2   |
| 2.  | (a) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6M       | C01        | L3   |
|     | (b) | Explain the field conditions that favor swelling of expansive Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |            |      |
|     |     | UNIT – II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12M      | CO2        | L2   |
| 3.  |     | Explain how Expansive Soil is treated by using Moisture control method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12171    | COZ        | بديو |
|     |     | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ****     | CO2        | 1 2  |
| 4.  |     | Explain the following methods along with merits and demerits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12M      | COZ        | L3   |
|     |     | i) Soil Replacement technique ii) Pre wetting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |            |      |
|     |     | UNIT – III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12M      | CO2        | L3   |
| 5.  |     | Explain in detail about spread footing foundation in expansive soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12111    | CO3        | تند  |
|     |     | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |            |      |
| 6.  |     | A site with a soil profile given in Table. A single story house will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -        |            |      |
| 0.  |     | constructed with a 0.4m shallow strip footing foundation founded at a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |            | •    |
|     |     | depth of 1.00 m. The house will have a structural floor with a crawl space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |      |
|     |     | helow. The dead load on the footing will be 2.85kN/m. Compute the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |            |      |
|     |     | weighted risk factor, free field heave, predicted footing heave.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            | •    |
|     |     | Depth (m) 0-2.5 2.5-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12M      | CO3        | L3   |
|     |     | Soil Type Silty Clay Sandy Claystone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |            |      |
|     |     | Water Content (%) 22 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |            |      |
| _   |     | Dry Density (kN/m³) 16.3 18.1 (CG by Graph of Gr |          |            |      |
| -   |     | (3 % SWEII, 824 (12 4717 KT4) III (70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |            |      |
| ٠   |     | CV Swelling Pressure, $\sigma_{xy}^a$ (kN/m²) 78.6 117.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |            |      |
|     |     | UNIT – IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |            | ~ ^  |
| 7.  | ,   | What is deep foundation techniques adopted in Expansive Soil? Explain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12M      | CO4        | L2   |
|     |     | Patented Pier Technology in Expansive Soil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |      |
|     |     | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |            |      |
| 8.  |     | What are the remedial measures for deep foundations, explain in detail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · 12M    | CO4        | L3   |
| 0.  |     | UNIT-V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |            |      |
| •   |     | A basement wall is to be constructed in an area with expansive clay soil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |            |      |
| 9.  |     | The angle of internal friction, $\phi_{i}$ of the clay soil is equal to 22°. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |      |
|     |     | backfill will be compacted to a dry density, vd, of 16 kN/m at a water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |            |      |
| •   |     | content of 22 % The CV swelling pressure for this soil was measured in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · 121/1  | CO5        | L2   |
|     |     | the laboratory to be 48 kN/m <sup>2</sup> . The basement will have a structural moon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1        |            |      |
|     |     | The height of the backfill behind the wall will be 3.00 m. Determine the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ;        |            |      |
|     |     | lateral earth pressure acting on the wall with non-expansive soil backful                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ı        |            |      |
|     |     | and considering the expansion potential of the backfill.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |            |      |
|     |     | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J. A. W. |            | Υn   |
| 10. |     | Discuss the methods to reduce lateral swelling pressure of Expansive Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12IV     | CO5        | L2   |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |      |

#### K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. II Semester (R22PG) Regular Examinations of August – 2023 SUB: DESIGN WITH GEOSYNTHETICS (GTE)

| •   | •          | SUB: DESIGN WITH GEOSYNTHETICS (GTE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |             |          |
|-----|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|----------|
|     | T          | ime: 3 Hours Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x. Mar    | ks : 60     |          |
|     |            | Answer any FIVE Questions choosing one question from each to All questions carry Equal Marks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | anit.     |             |          |
|     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M         | <b>€</b> 'O | BL       |
|     |            | UNIT - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |             |          |
| 1   | . (a)      | Explain the and necessity of geosynthetics in ground improvement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6M        | COI         | 1.1      |
|     | (b)        | In placing a geotextile beneath railroad ballast, the materials can serve in four different functions simultaneously. Describe and illustrate these functions.  (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6M        | COI         | 1.2      |
| 2.  | . (a)      | What two commonly used polymers in the manufacture of geosynthetics materials are in the polyolefin family.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6M        | COI         | L1       |
|     | (b)        | Explain the properties of geosynthetic Clay Liners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6M        | COI         | 1.2      |
|     |            | UNIT – II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |          |
| 3.  | (a)        | Discuss the Functions of geotextiles, Explain with neat sketch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6M        | C()2        | 1_2      |
|     | (b)        | Explain the geotextiles testing of a) Index test b) performance test (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6M        | CO2         | L2       |
| 4.  |            | Design a 6.00 m high wrap-around type of geotextile wall that is to carry a storage area of equivalent dead load of 10 kPa. The wall is to be backfilled with a granular soil (SP) having properties of $\gamma = 18$ kN/m³, $\phi = 36^\circ$ , and $c = 0$ kN/m². A woven slit-film geotextile with wrap (machine) direction ultimate wide-width tensile strength of 50 kN/m and friction angle with granular soil of $\delta = 24^\circ$ is intended to be used in its construction. The orientation of the geotextile is perpendicular to the wall face and the edges are to be overlapped or sewn to handle the weft (cross machine) direction. A factor of safety of 1.4 is to be used along with site specific reduction factors. | 12M       | CO2         | 1.4      |
| 5.  | (a)        | In using geogrids for reinforcement of paved roads, a possible mechanism involving increased bearing capacity is often mentioned. On a conceptual basis, how does this work?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6M        | CO3         | L2       |
|     | (b)        | Discus the function of geogrids as soil reinforcement (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6M        | CO3         | L2       |
| 6.  |            | What is the effect of high temperature on the following mechanical properties of geogrids? (i) modulus, (ii) tensile strength, (iii) elongation at failure, and (iv) creep behavior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12M       | CO3         | L2       |
|     |            | UNIT – IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | ~~.         | ~ ~      |
| 7.  |            | Discuss the design of geonets concepts for drainage with neat sketch (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12M       | CO4         | L3       |
| 8.  | (a)        | When using geonets for drainage functions, what keeps the adjacent soil from getting in their apertures and blocking flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6M        | CO4         | L2       |
|     | (b)        | List the basic difference between geonets and geogrids UNIT-V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6M        | CO4         | LI       |
| 9.  | (a)        | What is the difference between thermoplastic and thermoset geomembrane?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | бM        | CO5         | LI       |
|     | (b)        | Discus the advantages and disadvantages of the composite geomembrane clay liner?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6M        | CO5         | L2       |
|     |            | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i></i> - | ~           | • -      |
| 10. | (a)<br>(b) | Discuss the properties required for survivability of geomembrane  Describe the chemical interaction process by which organic solvents decrease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6M<br>6M  | CO5         | L2<br>L1 |
|     |            | the hydraulic conductivity of clay soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |             |          |

#### K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. II Semester (R22PG) Regular Examinations of August – 2023 SUB: Power System and State Estimation (PS)

Time: 3 Hours

Max. Marks: 60

| Q.No. | Stem of the Question                                                                                                                   | M  | L  | CO   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|----|----|------|
|       | UNIT-I                                                                                                                                 |    |    |      |
| 1.    | Illustrate step by step formation of Bus admittance matrix by Direct inspection method.                                                | 12 | L2 | C01  |
|       | (OR)                                                                                                                                   |    |    |      |
| 2.    | Write an algorithm for formation of Bus Impedance matrix with addition of a link.                                                      | 6  | L2 | CO 1 |
|       | b Write Π model Representation of nominal tap transformer.                                                                             | 6  | L2 | CO 1 |
|       | UNIT-II                                                                                                                                |    |    |      |
| 3.    | Define power system security. List the various factors influencing power system security with brief explanation.                       | 12 | L2 | CO 2 |
|       | (OR)                                                                                                                                   |    |    |      |
| 4.    | Explain DC power flow methods in detail.                                                                                               | 12 | L2 | CO 3 |
|       | UNIT-III                                                                                                                               |    |    |      |
| 5.    | a Explain contingency analysis by detection of network problems.                                                                       | 6  | L1 | CO 3 |
|       | b Explain contingency analysis selection procedure in detail.                                                                          | 6  | L1 | CO 3 |
|       | (OR)                                                                                                                                   |    |    | •    |
| 6.    | Explain briefly about linear sensitivity factors in detail.  UNIT-IV                                                                   | 12 | L2 | CO3  |
| 7.    | What is SCADA? Explain the role of SCADA in state estimation of power system networks and list its advantages and disadvantages?  (OR) | 12 | L2 | CO 4 |
| 8.    | a) List the Various methods of state estimation. Give their Properties and limits.                                                     | 6  | L5 | CO 2 |
|       | · / · · · · · · · · · · · · · · · · · ·                                                                                                | 6  | L5 | CO 2 |
|       | b) Write the applications of power system state estimation.  UNIT-V                                                                    |    |    |      |
| 9.    | a) Explain electricity sector structure model in detail.                                                                               | 6  | L3 | CO 4 |
|       | b) Write short notes on Available Transfer Capacity (ATC).  (OR)                                                                       | 6  | L3 | CO 4 |
| 10.   | Explain various congestion management methods. Explain in detail about system security deregulations.                                  | 12 | L2 | CO 3 |

#### K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. II Semester (R22PG) Regular Examinations of August – 2023 SUB: POWER SYSTEM DYNAMICS - II (PS)

|      | SOB. FOWER STSTEM DITAMICS - II (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-----|
|      | Time: 3 Hours Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | ks: 60 |     |
|      | Answer any FIVE Questions choosing one question from each All questions carry Equal Marks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | unit    |        |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M       | C0     | BL  |
|      | UNIT - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |        |     |
| 1.   | Explain the structure of a power system with neat sketch, showing its basic elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12M     | CO1    | L1  |
|      | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |     |
| 2.   | Describe small signal stability. Also show the nature of small disturbance response.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12M     | CO1    | L3  |
|      | UNIT – II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |     |
| _    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 121/4   | CO2    | L2  |
| 3.   | Explain the direct method of stability assessment stability enhancing techniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12141   |        | 1.2 |
|      | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |     |
| 4.   | Write short notes on mitigation using power system stabilizer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12M     | CO2    | L2  |
|      | UNIT – III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |        |     |
| 5.   | Write short notes on mitigation using power system stabilizer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12M     | CO3    | L3  |
|      | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |     |
| 6.   | Explain in detail about asynchronous operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12M     | CO3    | L3  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | •      |     |
|      | UNIT – IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |     |
| 7.   | Explain about dynamic analysis of voltage stability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12M     | CO4    | L4  |
|      | (OP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |     |
| 0    | (OR) What is voltage stability? What are the factors affecting voltage instability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12M     | CO4    | L4  |
| 8.   | and collapse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2,111 |        | LIT |
|      | UNIT-V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |        |     |
| 9.   | Explain about (a) Frequency stability (b) Automation Generation control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12M     | CO5    | L5  |
|      | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |     |
| 10.  | Describe about sub synchronous resonance in series compensated system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12M     | CO5    | L5  |
| , v. | Describe accordance of the property of the pro |         |        |     |

SET - 1

Q.P. Code: 2252204

# K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAP A M. Tech. II Semester (R22PG) Regular Examinations of August – 2023 SUB: ENERGY AUDITING AND MANAGEMENT (PS)

Time: 3 Hours Max. Marks: 60

|     |     |                                                                                                                     | M          | CO              | BL |
|-----|-----|---------------------------------------------------------------------------------------------------------------------|------------|-----------------|----|
|     |     | UNIT - I                                                                                                            |            |                 |    |
| 1.  |     | Explain the methodology for detailed Energy Audit Process.                                                          | 12M        | C01             | L2 |
|     |     | (OR)                                                                                                                |            |                 |    |
| 2.  | (a) | List and enumerate the Goals of Energy Audit and where they can be applied.                                         | 6M         | C01             | L2 |
| -   | (b) | Explain in detail about Sankey diagram, Pie charts and Load Profiles used in Energy flow representation.            | 6M         | CO1             | L2 |
|     |     | UNIT – II                                                                                                           |            |                 |    |
| 3.  | (a) | Discuss the features of energy efficient motors.                                                                    | 5M         | CO2             | L2 |
|     | (b) | Which is the best location for capacitor banks for power factor improvement from energy conservation point of view? | 7M         | CO2             | L4 |
|     |     | (OR)                                                                                                                |            |                 |    |
| 4.  | (a) | Explain why efficiency of Energy efficient motor is more than conventional motor?                                   | 7M         | CO2             | L2 |
|     | (b) | How do you size a transformer for a load?                                                                           | 5M         | CO2             | L2 |
|     |     | UNIT – III                                                                                                          |            |                 |    |
| 5.  | (a) | Discuss the qualities of an energy efficient lighting                                                               | 6 <b>M</b> | CO <sub>3</sub> | L1 |
|     | (b) | Explain Energy conservation in Lighting Schemes                                                                     | 6M         | CO <sub>3</sub> | L1 |
|     |     | (OR)                                                                                                                |            |                 |    |
| 6.  |     | Write Short Notes on a) Electronic ballast b) Power quality issues                                                  | 12M        | CO3             | L1 |
|     |     | UNIT – IV                                                                                                           |            |                 |    |
| 7.  | (a) | What are the different types of co generation?                                                                      | 6M         | C04             | L1 |
|     | (b) | Write short notes on Electric loads of Air conditioning & Refrigeration                                             | 6M         | C04             | L1 |
|     |     | (OR)                                                                                                                |            |                 |    |
| 8.  | (a) | Explain the Optimal operation of cogeneration plants                                                                | 6M         | CO4             | L1 |
|     | (b) | Explain the types of Cool storage.                                                                                  | 6M         | CO4             | L1 |
|     |     | UNIT-V                                                                                                              |            |                 |    |
| 9.  | (a) | Write short notes on a) Electrolytic Process b) Compressors                                                         | 8M         | CO5             | L1 |
|     | (b) | Explain the Energy conservation measures in heating                                                                 | 4M         | CO5             | L1 |
|     | •   | (OR)                                                                                                                |            |                 |    |
| 10. | (a) | What is Energy Management System (EMS) for Computers? Explain                                                       | 6M         | CO5             | L1 |
|     | (b) | Is solar water heater better than electric geyser? Explain                                                          | 6M         | CO5             | L2 |

SET -

# K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. II Semester (R22PG) Regular Examinations of August - 2023 SUB: ELECTRICAL POWER QUALITY (PS)

Time: 3 Hours

Max. Marks: 60

|     |                                                                                                                                                                        | M     | CO   | BL  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-----|
| 1   |                                                                                                                                                                        | 12M   | CO2  | 1.2 |
|     | Define Power Quality. Briefly explain the various reasons for increased concern on power quality issues.                                                               |       |      |     |
| _   | (OR)                                                                                                                                                                   |       |      |     |
| 2.  | Define interruption. Discuss the causes of short and long interruptions. Suggest remedies to overcome the interruptions.                                               | 12M   | CO2  | 1.2 |
|     | UNIT – II                                                                                                                                                              |       |      |     |
| 3.  | Discuss the effect of power system harmonics on power system equipment and loads.                                                                                      | 12M   | CO4  | L3  |
|     | (OR)                                                                                                                                                                   |       |      |     |
| 4.  | Explain about the controlling of harmonics using passive and active filters. How active filters overcome the drawbacks of passive filters in controlling of harmonics. | 12M   | €O2  | L2  |
|     | UNIT – III                                                                                                                                                             |       |      |     |
| 5.  | Discuss how the capacitors are used for voltage regulation in power systems in shunt and series configuration.                                                         | 12M   | C04  | L3  |
|     | (OR)                                                                                                                                                                   |       |      |     |
| 6.  | Explain power quality problems created by drives and its impact on drive.                                                                                              | 12M   | CO2  | L2  |
|     | UNIT – IV                                                                                                                                                              |       |      |     |
| 7.  | Explain Control Methods for Single Phase APFC & Three Phase APFC and Control Techniques                                                                                | 12M   | CO2  | L2  |
|     | (OR)                                                                                                                                                                   |       |      | •   |
| 8.  | (a) Discuss the importance of Power factor improvement                                                                                                                 | 6M    | CO4  | L3  |
|     | (b) Explain Passive Filtering with suitable example                                                                                                                    | 6M    | CO2  | L2  |
|     | UNIT-V                                                                                                                                                                 | OIT   | COL  | 102 |
| 9.  |                                                                                                                                                                        | 107.1 | GO / | ~ ~ |
| 9.  | Discuss how the Dynamic Voltage Restorers are useful in reducing voltage sag and flicker problems                                                                      | 12M   | CO4  | L2  |
| 10. | List and explain grounding requirements and reasons for grounding.                                                                                                     | 12M   | CO2  | L1  |

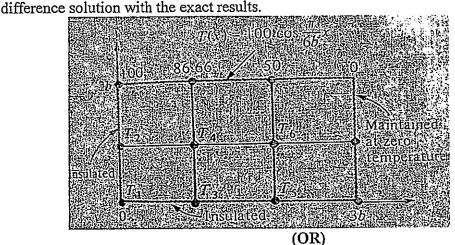
#### K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. II Semester (R22PG) Regular Examinations of August – 2023 SUB: ENERGY AUDIT AND MANAGEMENT (RE)

Time: 3 Hours Max. Marks: 60

|     |                                                                                                                                                                                                                                                                                                                                                                                                            | M   | CO  | BL  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
|     | UNIT - I                                                                                                                                                                                                                                                                                                                                                                                                   |     |     |     |
| 1.  | Explain the trends and pattern of Energy Consumption in India.                                                                                                                                                                                                                                                                                                                                             | 12M | CO1 | L1  |
|     | (OR)                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |
| 2.  | A hall 30 m long and 15 m wide with a ceiling height of 5 m is to be provided with a general illumination of 120 lumens/m <sup>2</sup> . Taking a coefficient of utilization of 0.5 and depreciation factor of 1.42, determine the number of fluorescent tubes required, their spacing, mounting height and total wattage. Taking luminous efficiency of fluorescent tube as 40 lumens/watt for 80 w tube. | 12M | CO1 | L4  |
|     | UNIT – II                                                                                                                                                                                                                                                                                                                                                                                                  |     |     | ~ ~ |
| 3.  | Explain in detail about Energy conservation in lighting.                                                                                                                                                                                                                                                                                                                                                   | 12M | CO2 | L2  |
|     | (OR)                                                                                                                                                                                                                                                                                                                                                                                                       |     | ~~  | ~ ~ |
| 4.  | Explain the methodology and steps of detailed energy audit with special                                                                                                                                                                                                                                                                                                                                    | 12M | CO2 | L2  |
|     | reference to a power plant.  UNIT – III                                                                                                                                                                                                                                                                                                                                                                    |     |     |     |
| 5.  | What are the various Peak Demand Control methodologies? Explain in                                                                                                                                                                                                                                                                                                                                         | 12M | CO3 | L1  |
|     | detail (OR)                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |
| 6.  | Explain on Energy efficient motors and factors affecting the motor efficiency.                                                                                                                                                                                                                                                                                                                             | 12M | CO3 | L2  |
|     | UNIT – IV                                                                                                                                                                                                                                                                                                                                                                                                  |     |     |     |
| 7.  | Explain 'Simple Payback Period' method of financial analysis with its advantages and limitations.                                                                                                                                                                                                                                                                                                          | 12M | CO4 | L3  |
|     | (OR)                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |
| 8.  | What is Cogeneration and explain about its types                                                                                                                                                                                                                                                                                                                                                           | 12M | CO4 | L1  |
|     | UNIT-V                                                                                                                                                                                                                                                                                                                                                                                                     |     |     |     |
| 9.  | Write a short note on Implementation plan for top                                                                                                                                                                                                                                                                                                                                                          | 12M | CO5 | L1  |
|     | Management.                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |
|     | (OR)                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |
| 10. | Explain about the Energy conservation measures of -Electrolytic Process -Computer Controls - software-EMS.                                                                                                                                                                                                                                                                                                 | 12M | CO5 | L3  |

**SET - 1** 

#### K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. II Semester (R22PG) Regular Examinations of August – 2023 SUB: COMPUTATIONAL FLUID DYNAMICS (RE)


Time: 3 Hours

Max. Marks: 60

Answer any FIVE Questions choosing one question from each unit.

All questions carry Equal Marks.

|    |                                                                                   | M   | CO              | $\mathbf{BL}$ |
|----|-----------------------------------------------------------------------------------|-----|-----------------|---------------|
|    | UNIT - I                                                                          |     |                 |               |
| 1. | What are the advantages and limitations of computational approach compared to     | 12M | CO1             | L1            |
|    | experimental approach, as far as fluid dynamics is concerned                      |     |                 |               |
|    | (OR)                                                                              |     |                 |               |
| 2. | Classify partial differential equations and explain forward, backward and central | 12M | CO1             | L2            |
|    | difference formulation.                                                           |     |                 |               |
|    | UNIT – II                                                                         |     |                 |               |
| 3. | a) Explain crank Nicholson implicit scheme.                                       | 12M | CO2             | L2            |
|    | b) Discuss consistency and convergence of the above scheme                        |     |                 | L6            |
|    | (OR)                                                                              |     |                 |               |
| 4. | Derive the continuity, Navier- stokes and energy equation in Cartesian            | 12M | CO2             | L3            |
|    | coordinate system?                                                                |     |                 |               |
|    | UNIT – III                                                                        |     |                 |               |
| 5. | Consider steady state heat conduction in a rectangular region 0<=x<=3b,           | 12M | CO <sub>3</sub> | L3            |
|    | 0<= y<= 2b, subjected to the boundary conditions as shown in fig. Calculate the   |     |                 |               |
|    |                                                                                   |     |                 |               |



temperatures T<sub>m</sub>, m=1 to 6, at six nodes shown in this fig, and compare the finite

6. Explain the process of pressure —velocity decoupling that occurs in the process of 12M CO3 L5 solving incompressible flows numerically.

UNIT - IV
7. Write the SIMPLER algorithm..

12M CO4 L2

L2

(OR)
8. Write Euler equation of inviscid and incompressible flows?

12M CO4

UNIT-V

9. Define the following terms 12M CO5 L1

i. Stability

ii. Consistency

iii. Round off error

iv. Convergence

v. Discretization error

(OR)

10. Explain briefly about Reynolds -Averaged Navier -Stokes (RANS) Equations 12M CO5 L2

# K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA

M. Tech. II Semester (R22PG) Regular Examinations of August – 2023

SUB: ENERGY CONSERVATION BY WASTE HEAT RECOVERY (RE)
Time: 3 Hours

Max. Marks: 60

Answer any FIVE Questions choosing one question from each unit.

|     |                         | All questions carry Equal Marks.                                                                                                                                                                                                                                                                                                                                                                                                                                           | ***** |     |           |
|-----|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----------|
|     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M     | CO  | BL        |
|     |                         | UNIT - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | •   |           |
| 1.  | (a)                     | Classify the waste heat sources and explain any two with neat sketch                                                                                                                                                                                                                                                                                                                                                                                                       | 6M    | CO1 | L2        |
|     | (b)                     | Discuss the high grade and low grade heat losses                                                                                                                                                                                                                                                                                                                                                                                                                           | 6M    | CO1 | L6        |
|     |                         | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |     |           |
| 2.  |                         | ne energy conservation and energy efficiency. How do an Industry, nation globe work would benefit from energy efficiency program.  UNIT – II                                                                                                                                                                                                                                                                                                                               | 12M   | CO1 | L1        |
| 3.  | (a)                     | Define total energy approaches with suitable example.                                                                                                                                                                                                                                                                                                                                                                                                                      | 6M    | CO2 | L1        |
|     | (b)                     | How do you classify the Cogeneration system? Explain any one system.                                                                                                                                                                                                                                                                                                                                                                                                       | 6M    | CO2 | L1,<br>L2 |
|     |                         | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |     |           |
| 4.  | (a)                     | Explain Gas-to-Gas and Gas-to-liquid heat recovery system with neat sketch                                                                                                                                                                                                                                                                                                                                                                                                 | 7M    | CO2 | L2        |
|     | (b)                     | How to perform energy analysis for industrial application  UNIT – III                                                                                                                                                                                                                                                                                                                                                                                                      | 5M    | CO2 | Li        |
| 5.  | Expl                    | ain Fluidized bed heat recovery systems with suitable application.                                                                                                                                                                                                                                                                                                                                                                                                         | 12M   | CO3 | L2        |
|     | •                       | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |     |           |
| 6.  | (a)                     | Explain the operating principle of a waste heat recovery boiler with examples.                                                                                                                                                                                                                                                                                                                                                                                             | 8M    | CO3 | L2        |
|     | (b)                     | Explain the operating principle of a run around coil exchanger                                                                                                                                                                                                                                                                                                                                                                                                             | 4M    | CO3 | L2        |
|     |                         | UNIT – IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |           |
| 7.  | (a)                     | A new small cogeneration plant installation is expected to reduce a company's annual energy bill by Rs.4, 86,000. If the capital cost of the new boiler installation is Rs.22, 20,000 and the annual maintenance and operating costs are Rs. 42,000, calculate the expected payback period for                                                                                                                                                                             | 7M    | CO4 | L1,<br>L2 |
|     | (b)                     | the project?  Define thermo-economic viability?                                                                                                                                                                                                                                                                                                                                                                                                                            | 5M    | CO4 | L1        |
|     | (0)                     | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |     |           |
| 8.  | to 10 furnal later cost | heat exchanger, steam is used to heat 3000 litres/hr of furnace oil from 30°C 00°C. The specific heat of furnace oil is 0.22 k Cal/ kg/C and the density of ace oil is 0.95. How much steam per hour is needed if steam at 4 kg/cm² with at heat of 510 kcal/kg is used? If steam cost is Rs.4/kg and electrical energy is Rs.8/kWh, which type of heating would be more economical in this cular case? (assume no losses in electrical and steam heating process)  UNIT-V | 12M   | CO4 | L2,<br>L1 |
| 9.  | Defi                    | ne energy storage? Explain the classification energy storage systems and                                                                                                                                                                                                                                                                                                                                                                                                   | 12M   | CO5 | L1        |
| •   |                         | brief discussion any one.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |           |
|     |                         | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |     |           |
| 10. | (a)                     | Discuss Thermal and Electrical storage systems.                                                                                                                                                                                                                                                                                                                                                                                                                            | 6M    | CO5 | L6        |
|     | (b)                     | Write a technical note on battery energy storage system.                                                                                                                                                                                                                                                                                                                                                                                                                   | 6M    | CO5 | L2        |

#### K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAP A M. Tech. II Semester (R22PG) Regular Examinations of August - 2023 SUB: SOLAR ENERGY TECHNOLOGY (RE)

Time: 3 Hours

Max. Marks: 60

|     |     |                                                                                           | M   | CO  | BL  |
|-----|-----|-------------------------------------------------------------------------------------------|-----|-----|-----|
|     |     | UNIT - I                                                                                  |     |     |     |
| 1.  | (a) | What will be future planning of solar power in India?                                     | 6M  | COI | L1  |
|     | (b) | Explain parabolic through concentrator solar system.                                      | 6M  | COI | 1.2 |
|     |     | (OR)                                                                                      |     |     |     |
| 2.  | (a) | Classify the solar plants based on temperature. Discuss any one with neat sketch.         | 6M  | COI | 1.2 |
|     | (b) | Write about the flat plate collector and parabolic collector.                             | 6M  | COI | 1.2 |
|     |     | UNIT – II                                                                                 |     |     |     |
| 3.  | (a) | Explains the solar heat and cooling system with diagrams?                                 | 6M  | CO2 | 1.2 |
|     | (b) | Explain the solar cooker.                                                                 | 6M  | CO2 | L2  |
|     |     | (OR)                                                                                      |     |     |     |
| 4.  | (a) | What is a solar pond explain with a neat diagram and its application?                     | 6M  | CO2 | L2  |
|     | (b) | What is term of solar desalination?                                                       | 6M  | CO2 | L1  |
|     |     | UNIT – III                                                                                |     |     |     |
| 5.  |     | at are semiconductors how are they classified? What are the properties of iconductors?    | 12M | CO3 | L1  |
|     |     | (OR)                                                                                      |     |     |     |
| 6.  | (a) | Explain the variation of efficiency with band-gap and temperature efficiency measurements | 6M  | CO3 | L2  |
|     | (b) | Explain the p-n junction solar system                                                     | 6M  | CO3 | L2  |
|     |     | UNIT – IV                                                                                 | •   |     |     |
| 7.  | (a) | Explain the solar cells?                                                                  | 6M  | CO4 | L2  |
|     | (b) | Explain the design procedure of PV solar system.                                          | 6M  | CO4 | L2  |
|     |     | (OR)                                                                                      |     |     |     |
| 8.  | (a) | Explain the solar array system.                                                           | 6M  | CO4 | L2  |
|     | (b) | Explain the solar energy grid connected system.                                           | 6M  | CO4 | L2  |
|     |     | UNIT-V                                                                                    |     |     |     |
| 9.  | (a) | What is the thermal comfort explain briefly.                                              | 6M  | CO5 | L2  |
|     | (b) | Briefly explain the radiative cooling system.                                             | 6M  | CO5 | L2  |
|     |     | (OR)                                                                                      |     |     |     |
| 10. | (a) | Explain the concept of passive cooling system and evaporative cooling system.             | 6M  | CO5 | L2  |
|     | (b) | What are the bioclimatic classifications?                                                 | 6M  | CO5 | L1  |

7. (a)

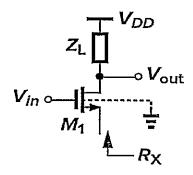
6M

L5

# K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA

M. Tech. II Semester (R22PG) Regular Examinations of August – 2023

SUB: Analog and Digital CMOS VLSI Design (ES&VLSI)
Time: 3 Hours


Max. Marks: 60

Answer any FIVE Questions choosing one question from each unit.

All questions carry Equal Marks.

|    |     |                                                                                                                                                                                                     | M          | CO              | BL |
|----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|----|
|    |     | UNIT – I                                                                                                                                                                                            |            |                 |    |
| 1. | (a) | Write short notes on fixed cost. Assume a wafer size of 12 inch, a die size of 2.5 cm <sup>2</sup> , 1 defects/cm <sup>2</sup> and $\alpha = 3$ . Determine the die yield of this CMOS process run. | 6M         | C01             | L4 |
|    | (b) | Derive the expression for Switching threshold of a CMOS Inverter.                                                                                                                                   | 6M         | CO1             | L3 |
|    |     | (OR)                                                                                                                                                                                                |            |                 |    |
| 2. | (a) | Explain the basic MOS structure with a neat diagram.                                                                                                                                                | 6M         | CO1             | L2 |
|    | (b) | Derive the expression for gain in Noise margins.                                                                                                                                                    | 6M         | CO1             | L3 |
|    |     | UNIT – II                                                                                                                                                                                           |            |                 |    |
| 3. | (a) | What is ESD? Explain ESD protection circuit with a neat diagram.                                                                                                                                    | 6M         | CO2             | L1 |
|    | (b) | Explain in Physical Design Flow (i) Floor planning (ii) Routing.                                                                                                                                    | 6M         | CO2             | L2 |
|    |     | (OR)                                                                                                                                                                                                |            |                 |    |
| 4. | (a) | Explain the pass transistor implementation of an AND gate.                                                                                                                                          | 6 <b>M</b> | CO2             | L2 |
|    | (b) | Explain the concept of Ratioed Logic with neat diagram.                                                                                                                                             | 6 <b>M</b> | CO <sub>2</sub> | L2 |
|    |     | UNIT – III                                                                                                                                                                                          |            |                 |    |
| 5. | (a) | Explain the working of C <sup>2</sup> MOS based dual-edge triggered register.                                                                                                                       | 6M         | CO3             | L2 |
|    | (b) | Distinguish between Latch vs Registered Based pipelines.                                                                                                                                            | 6M         | CO3             | L4 |
|    |     | (OR)                                                                                                                                                                                                |            |                 |    |
| 6. | (a) | Implement a positive latch based on Multiplexer and Explain.                                                                                                                                        | 6M         | CO3             | L2 |
|    | (b) | What is Oxide Break down and substrate current- Induced Body effect? Explain.                                                                                                                       | 6M         | CO3             | L2 |

UNIT - IV



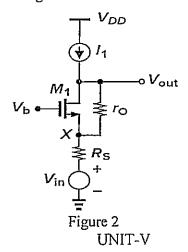

Consider the circuit shown in the Figure 1. Determine  $R_X$  if  $\lambda = 0$ .

Figure 1 Impedance seen at the source with  $\lambda = 0$ 

(b) Draw the circuit of Gilbert cell and explain why the gilbert cell can operate 6M CO4 L2 as an analog voltage Multiplier.

(OR)

8. (a) Compare the maximum output voltage swings provided by a CS stage and 6M CO4 L5 a Differential pair.



9. (a) In Figure 3, Find the drain current of M<sub>4</sub> if all of the transistors are in 6M CO5 L1 saturation?

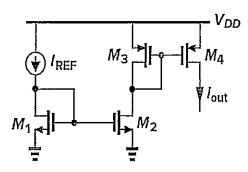



Figure 3

(b) Explain the basic concept of Common-mode feedback with neat diagram. 6M CO5 (OR)

L2

L5

L3

6M

6M

CO<sub>5</sub>

CO<sub>5</sub>

10. (a) State and prove Miller's theorem.

(b) In the circuit of Figure 4, assume that the Op-Amp is a single-pole voltage Amplifier. If  $V_{in}$  is a small step, calculate the time required for the output voltage to reach within 1% of its final value. What unity-gain bandwidth must the Op-Amp provide if  $1 + R_1/R_2 \approx 10$  and the settling time is to be less than  $5 \, ns$ ? For simplicity, assume that the Low-frequency gain is much greater than unity.

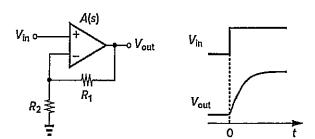



Figure 4

#### K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. II Semester (R22PG) Regular Examinations of August – 2023 SUB: Embedded and Real Time Operating Systems (ES&VLSI)

Time: 3 Hours

Max. Marks: 60

|     |        | i and the same of the same same same same same same same sam                                                               |            |     |          |
|-----|--------|----------------------------------------------------------------------------------------------------------------------------|------------|-----|----------|
|     |        | UNIT - I                                                                                                                   | M          | CO  | BL       |
| 3   | l. (a) |                                                                                                                            | 6M         | CO1 | 1.1      |
|     | (b)    |                                                                                                                            | 6M         | COI | 1.3      |
|     |        | (OR)                                                                                                                       |            |     |          |
| 2   | . (a)  | i. Full-custom/VLSI ii. Semi-custom ASIC (gate array and standard cell)                                                    | 9M         | COI | L3       |
|     |        | iii. PLD                                                                                                                   |            |     |          |
|     | (b)    | · · · · · · · · · · · · · · · · · · ·                                                                                      | 3M         | CO1 | L2       |
| 3.  | (0)    | UNIT – II                                                                                                                  |            |     |          |
| ٥.  | • • •  | Illustrate the idea of pipelining with an example.                                                                         | 6M         | CO2 | L2       |
|     | (b)    | List and explain several addressing modes of general purpose processor. (OR)                                               | 6M         | CO2 | L2       |
| 4.  | (a)    | Discuss the two memory architectures: Harvard and Princeton.                                                               | 4M         | CO2 | L2       |
|     | (b)    | Write a program to add numbers from 1 to 10 in C language as well as in assembly language.                                 | 8M         | CO2 | L3       |
|     |        | UNIT – III                                                                                                                 |            |     |          |
| 5.  | (a)    | Explore the difference between a computational model and a language.                                                       | 5M         | CO3 | r -2     |
|     | (b)    | With an example explain communication among processors using shared memory.  (OR)                                          | 7M         | CO3 | L2<br>L2 |
| 6.  | (a)    | Develop a C language program for capturing the elevator's Unit Control state machine in a sequential programming language. | 6M         | CO3 | L3       |
|     | (b)    | Develop a program to implement consumer-producer problem using conditional variables.                                      | 6 <b>M</b> | CO3 | L3       |
|     |        | UNIT – IV                                                                                                                  |            |     |          |
| 7.  | (a)    | What is synthesis? Discuss in detail logical synthesis, RT synthesis and behavioral synthesis.                             | 9M         | CO4 | L2       |
|     | (b)    | Briefly introduce design technology.                                                                                       | 3M         | CO4 | L2       |
|     |        | (OR)                                                                                                                       | OIII       | 004 | ,L124    |
| 8.  | (a)    | Discuss in detail the concept of IP crores reuse.                                                                          | 6 <b>M</b> | CO4 | L2       |
|     | (b)    | Briefly discuss the verification of hardware/software co-simulation.                                                       | 6M         |     |          |
|     | • •    |                                                                                                                            | OTAT       | CO4 | L2       |
| 9.  | (0)    | UNIT-V                                                                                                                     |            |     |          |
| ۶.  | (a)    | What is a semaphore? Discuss in detail binary semaphore and counting semaphores.                                           | 6M         | CO5 | L2       |
|     | (b)    | List and explain different states of a task.                                                                               | 6M         | CO5 | L2       |
| •   |        | (OR)                                                                                                                       |            | •   |          |
| 10. | (a)    | With the help of a diagram, explain the relation between tasks, ISRs and a message mailbox.                                | бМ         | CO5 | L2       |
|     | (b)    | What is an interrupt? What is an ISR? How to handle Interrupts?                                                            | 6M         | CO5 | L2       |

### K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. II Semester (R22PG) Regular Examinations of August – 2023 SUB: Advanced Computer Architecture (ES&VLSI)

Time: 3 Hours Max. Marks: 60

|     |     | All questions carry Equal Marks.                                                                                                                                                                                                                 |          |            |          |
|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|----------|
|     |     |                                                                                                                                                                                                                                                  | M        | CO         | BL       |
|     |     | UNIT - I                                                                                                                                                                                                                                         |          |            |          |
| 1.  | (a) | How do you compare the terms cost and price. Explain in detail about Amdahl's law.                                                                                                                                                               | 6M       | C01        | L5       |
|     | (b) | Assume a disk subsystem with the following components and MTTF:  10 disks, each rated at 1,000,000-hour MTTF  1 ATA controller, 500,000-hour MTTF  1 power supply, 200,000-hour MTTF  1 fan, 200,000-hour MTTF  1 ATA cable, 1,000,000-hour MTTF | 6M       | C01        | L3       |
|     |     | Using the simplifying assumptions that the lifetimes are exponentially distributed and that failures are independent, compute the MTTF of the system as a whole.                                                                                 |          |            |          |
|     |     | (OR)                                                                                                                                                                                                                                             |          |            |          |
| 2.  | (a) | Show that the ratio of the geometric means is equal to the geometric mean of the performance ratios, and that the reference computer of SPECRatio matters not.                                                                                   | 6M       | C01        | L2       |
|     | (b) | Explain the addressing modes for signal processing operations in the instruction set with examples                                                                                                                                               | 6M       | C01        | L2       |
|     | •   | UNIT – II                                                                                                                                                                                                                                        |          |            |          |
| 3.  | (a) | Compute the number of bits are in the (0,2) branch predictor with 4K entries? How many entries are in a (2,2) predictor with the same number of bits?                                                                                            | 6M       | C02        | L3       |
|     | (b) | Explain about hardware-based speculation using Tomasulo's algorithm.  (OR)                                                                                                                                                                       | 6M       | CO2        | L2       |
| 4.  | (a) | Distinguish between hardware and software solutions                                                                                                                                                                                              | 6M       | CO2        | L4       |
|     | (b) | Illustrate conditional or predicated instructions? Explain with examples.  UNIT – III                                                                                                                                                            | 6M       | CO2        | L2       |
| 5.  | (a) | Classify different techniques used for reducing cache miss penalty.                                                                                                                                                                              | 6M       | CO3        | L2       |
|     | (b) | How is a block found if it is memory (OR)                                                                                                                                                                                                        | 6M       | C03        | L2       |
| 6.  | (a) | Identify Which block should be replaced on a virtual miss                                                                                                                                                                                        | 6M       | CO3        | L3       |
|     | (b) | Briefly discuss about a virtual memory.                                                                                                                                                                                                          | 6M       | CO3        | L2       |
|     |     | UNIT – IV                                                                                                                                                                                                                                        | C71 K    | GO4        | τ α      |
| 7.  | (a) | Discuss about the performance of symmetric shared memory                                                                                                                                                                                         | 6M<br>6M | CO4<br>CO4 | L2<br>L2 |
|     | (b) | What are the basic schemes for enforcing coherence, explain them in detail.  (OR)                                                                                                                                                                |          |            |          |
| 8.  | (a) | What is multiprocessor cache coherence. Explain in detail.                                                                                                                                                                                       | 6M<br>6M | CO4<br>CO4 | L2<br>L2 |
|     | (b) | What are the basic schemes for enforcing coherence, explain them in detail.  UNIT-V                                                                                                                                                              |          |            |          |
| 9.  | (a) | Discuss about the following terms  (i) Fault (ii) Failure (iii) Error                                                                                                                                                                            | 6M       | C05        | L2       |
|     | (b) | Explain about 6 types of RAID in brief. (OR)                                                                                                                                                                                                     | 6M       | CO5        | L2       |
| 10. | (a) | Discuss about the throughput versus response time for an I/O system                                                                                                                                                                              | 6M       | CO5        | L2       |
|     | (b) | Write about the practical issues to be considered for commercial interconnection networks.                                                                                                                                                       | 6M       | CO5        | L2       |

### K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA

M. Tech. II Sem. (R22PG) Regular Examinations of August - 2023 SUB: Network Security and Cryptography (ES & VLSI)

Time: 3 Hours Max. Marks: 60

|     |     | Questions<br>UNIT - I                                                                                  | Marks | CO  | BL  |
|-----|-----|--------------------------------------------------------------------------------------------------------|-------|-----|-----|
| 1.  |     | Explain in detail about (i) Chinese Remainder Theorem (ii) Euclidean Algorithm                         | 12M   | CO2 | L2  |
|     |     | (OR)                                                                                                   |       |     |     |
| 2.  |     | Elucidate various classical Encryption Techniques?  UNIT – II                                          | 12M   | CO1 | L3  |
| 3.  | (a) | Explain the Operation of DES Algorithm?                                                                | 6M    | COI | 1,2 |
|     | (b) | Explain the Operation of AES Algorithm?                                                                | 6M    | CO1 | L2  |
|     | ` ' | (OR)                                                                                                   |       |     |     |
| 4.  |     | Write in detail about (i) Block Cipher principles (ii) Triple DES UNIT – III                           | 12M   | COI | L1  |
| 5.  | (a) | Compare Diffie -Hellman Key exchange, Elliptic Curve Cryptography                                      | 6M    | COI | L5  |
|     | (b) | Explain about Elliptical Curve Cryptography?                                                           | 6M    | CO1 | L3  |
|     |     | (OR)                                                                                                   |       |     |     |
| 6.  | (a) | Illustrate HASH functions and how they are helpful in Message Authentications?                         | 6M    | CO3 | L4  |
|     | (b) | Explain in detail about Message digest algorithms?  UNIT – IV                                          | 6M    | CO3 | L2  |
| 7.  |     | Explain in detail the architecture of IP Security and Secure Electronic Transaction?                   | 12M   | CO1 | L2  |
|     |     | (OR)                                                                                                   |       |     |     |
| 8.  |     | Illustrate (i) Secure Socket Layer (ii) Transport Layer Security UNIT-V                                | 12M   | CO2 | L4  |
| 9.  |     | Explain in detail about different types of viruses and Firewall Design Principles?                     | 12M   | CO2 | L3  |
|     |     | (OR)                                                                                                   |       |     |     |
| 10. |     | List the three classes of intruders and Explain the intrusion techniques to protect from the intruders | 12M   | CO1 | L2  |

**SET - 1** 

# K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA

M. Tech. II Semester (AI & DS-R22 PG) Regular Examinations of August-2023

SUB: Data Science (AI & DS)

Time: 3 Hours

Max. Marks: 60

|     |     |                                                                                     | Marks      | CO  | BL |
|-----|-----|-------------------------------------------------------------------------------------|------------|-----|----|
|     |     | UNIT - I                                                                            |            |     |    |
| 1.  | (a) | What Is Data Science? Explain the history of the Data Science.                      | 6M         | CO1 | LI |
|     | (b) | Discuss the Exploratory Data Analysis.                                              | 6M         | CO1 | L3 |
|     |     | (OR)                                                                                |            |     |    |
| 2.  |     | What is EDA? Explain EDA in data science with suitable examples.                    | 12M        | CO1 | L2 |
|     |     | UNIT – II                                                                           |            |     |    |
| 3.  |     | Discuss the Web APIs and Other Tools in detail.                                     | 12M        | CO2 | L3 |
|     |     | (OR)                                                                                |            |     |    |
| 4.  | (a) | Explain linear regression in detail.                                                | 6M         | CO2 | L3 |
|     | (b) | Discuss the K-NN algorithm in detail.                                               | 6M         | CO2 | L2 |
|     |     | UNIT – III                                                                          | -          |     |    |
| 5.  | (a) | Explain the Data Visualization History.                                             | <b>6M</b>  | CO3 | L3 |
|     | (b) | Describe the Data Visualization at Square.                                          | 6M         | CO3 | L4 |
|     |     | (OR)                                                                                |            | ,   |    |
| 6.  |     | How data science detects bad behavior efficiently? Explain with an example          | 12M        | CO3 | L3 |
|     |     | $\mathbf{UNIT} - \mathbf{IV}$                                                       |            |     |    |
| 7.  |     | Why use R for analytics? What are the common R Libraries for data science? Explain. | 12M        | CO4 | L1 |
|     |     | (OR)                                                                                |            | •   |    |
| 8.  |     | Explain the R programming structures.                                               | 12M        | CO4 | L4 |
|     | ٠.  | UNIT-V                                                                              |            | •   |    |
| 9.  | (a) | Discuss the Social Network Analysis at Morning Analytics.                           | 6 <b>M</b> | CO5 | L3 |
|     | (b) | Write shot notes on Data Journalism.                                                | 6M         | CO5 | L1 |
|     |     | (OR)                                                                                |            |     |    |
| 10. |     | Explain the need of centrality measures in social networks?                         | 12M        | CO5 | L3 |

# K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. II Semester (R22PG) Regular Examinations of August – 2023 SUB: DEEP LEARNING (AI&DS)

Time: 3 Hours

Max. Marks: 60

|     |     | Tall diagrams and a diagrams                                                | ~ ~     | ~~       | mr                 |
|-----|-----|-----------------------------------------------------------------------------|---------|----------|--------------------|
|     |     |                                                                             | M       | CO       | BL                 |
|     |     | UNIT - I                                                                    |         |          |                    |
| 1.  | (a) | Define Machine Learning. Briefly discuss the types of Machine Learning.     | 6M      | CO1      | LI                 |
|     | (b) | What is the purpose of Optimization Techniques? How optimization            | 6M      | CO1      | L2                 |
|     | (0) | techniques help in ANN'S. Discuss.                                          |         |          |                    |
|     |     | (OR)                                                                        |         |          | ~ ~                |
| 2.  | (a) | Define Artificial Neural Networks. Discuss the types of ANN's.              | 6M      | CO1      | L3                 |
|     | (b) | Discuss the classification problem with the help of a data set.             | 6M      | CO1      | L2                 |
|     |     | UNIT – II                                                                   |         |          |                    |
| 3.  | (a) | What is the purpose of Convolution layer and Pooling layer in CNN?          | 6M      | CO2      | L2                 |
| ٠.  | ()  | Discuss.                                                                    | C3 11   | COL      | Υn                 |
|     | (b) | What are the advantages and disadvantages of Leaky ReLU and                 | 6M      | CO2      | L2                 |
|     |     | Randomized ReLU? Discuss.                                                   |         | <u>.</u> | į.                 |
|     |     | (OR)                                                                        | 12M     | CO2      | L3                 |
| 4.  |     | What are the various applications of CNN? Explain them.                     | 122111  | 002      |                    |
|     |     | UNIT – III                                                                  | 6M      | CO3      | L4                 |
| 5.  | (a) | How RNN is different from CNN? Discuss.                                     | 6M      | CO3      | L2                 |
|     | (b) | Write short notes on: i) Bidirectional and Stateful RNNs ii) Deep Recurrent | OIVI    | COS      | 200                |
|     |     | Neural Network                                                              |         |          |                    |
|     |     | (OR)                                                                        | C 18 AT | COZ      | L3                 |
| 6.  | (a) | Discuss the challenges encountered with vanishing gradients in RNN.         | 6M      | CO3      |                    |
|     | (b) | Explain RNN Topology.                                                       | 6M      | CO3      | L2                 |
|     |     | UNIT – IV                                                                   |         |          |                    |
| 7.  | (a) | List the types of Autoencoders? Explain any two.                            | 6M      | CO4      | <b>L4</b>          |
|     | (b) | How Regularized Autoencoder is different from other types of                | 6M      | CO4      | L3                 |
|     | ()  | Autoencoders? Discuss.                                                      |         |          |                    |
|     |     | (OR)                                                                        |         |          |                    |
| 8.  |     | Write short notes of Deep Autoencoder and Denoising Autoencoder and         | 12M     | CO4      | L4                 |
|     |     | list the advantages and disadvantages of Deep Autoencoder amd               |         |          |                    |
|     |     | Denoising Autoencoder.                                                      |         |          |                    |
|     |     | UNIT-V                                                                      | 6M      | CO5      | L2                 |
| 9.  | (a) | How Boltzmann machine is related to hopefield networks? Discuss.            |         | CO5      | L4                 |
|     | (b) | What is the purpose of Gibbs Sampler in RBM Architecture? Discuss.          | 6M      | COS      | ,,, <del>,,,</del> |
|     |     | (OR)                                                                        | 10 8/   | COF      | L4                 |
| 10. |     | Discuss the features of the following frameworks: (i) TensorFlow (ii)       | 12 M    | CO5      | , <del></del>      |
|     |     | PyTorch                                                                     |         |          |                    |

SET - 1

Q.P. Code: 2298204

#### K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. II Semester (R22PG) Regular Examinations of August – 2023 SUB: EXPLORATORY DATA ANALYSIS USING R (AI&DS)

Time: 3 Hours Max. Marks: 60

|     |            |                                                                                                | M              | CO  | BL         |
|-----|------------|------------------------------------------------------------------------------------------------|----------------|-----|------------|
|     |            | UNIT - I                                                                                       |                |     |            |
| 1.  | (a)        | What is data, information, and knowledge? Discuss the role of data analysis.                   | 6M             | CO1 | L1         |
|     | (b)        | Construct histograms and QQ plots from the brain weight data of mammals.                       | 6M             | CO1 | L2         |
|     |            | (OR)                                                                                           |                |     |            |
| 2   | (a)        | Explain a Representative R session.                                                            | 6M             | CO1 | L2         |
| 2.  | (a)<br>(b) | Why R? Explain some R packages that support analysis methods from many branches of statistics. | 6M             | CO1 | L1,<br>L2  |
|     |            | UNIT – II                                                                                      |                |     |            |
| 3.  | (a)        | Discuss a few of the more common base graphics functions.                                      | 6M             | CO2 | L2         |
| J.  |            | Explain the optional parameters for the base graphics.                                         | 6M             | CO2 | L2         |
|     | (b)        | (OR)                                                                                           |                |     |            |
| 4.  | (a)        | Illustrate the plot function in sample R and model the boxplot summary using plot function.    | 6M             | CO2 | L3         |
|     | (b)        | Explain the color options in R with examples.                                                  | 6M             | CO2 | L2         |
|     | (0)        | UNIT – III                                                                                     |                |     |            |
| 5.  | (a)        | What are the four key concepts in exploring data? Explain the general strategies of EDA.       | 6M             | CO3 | L1,<br>L2  |
|     | (b)        | Write about the limitations of the simple summary statistics                                   | 6 <b>M</b>     | CO3 | L1         |
|     | (-)        | (OR)                                                                                           |                |     |            |
| 6.  |            | Discuss various Anomalies in numerical data with examples                                      | 12M            | CO3 | L2 .       |
|     |            | UNIT – IV                                                                                      |                |     |            |
| 7.  | (a)        | Why manual data entry is bad but sometimes expedient. Give reasons.                            | <b>6M</b>      | CO4 | L1         |
|     | (b)        | How CSV files work? Explain the read and write CSV operations in R with examples.              | 6M             | CO4 | L1,<br>L2  |
|     |            | (OR)                                                                                           |                |     |            |
| 8.  | (a)        | How to save and retrieve R objects? Explain with functions                                     | 6M             | CO4 | L1,<br>L2  |
|     | (b)        | Explain merging data from different sources.                                                   | 6M             | CO4 | L2         |
|     | (~)        | UNIT-V                                                                                         |                |     |            |
| 9.  | (a)        | Explain (i) Describing lines in the plane (ii) Fitting lines to points in the plane.           | 6M             | CO5 | L2         |
|     | (b)        | Discuss the problem of collinearity with an example.                                           | 6M             | CO5 | L2         |
|     |            | (OR)                                                                                           | <b>ζ</b> Ά. ΙΓ | COF | <b>T</b> 1 |
| 10. | (a)        | What is linear regression? Explain multiple predictors in linear regression with examples.     | 6M             | CO5 | L1,<br>L2  |
|     | (b)        | Explain the most important linear regression tools available in R.                             | 6M             | CO5 | L2         |

SET - 1

### K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAP A M. Tech. II Semester (R22PG) Regular Examinations of August – 2023 SUB: TEXT MINING & TIME SERIES DATA (AI&DS)

Time: 3 Hours

Max. Marks: 60

|     |       |                                                                                                       | M    | CO          | BL  |
|-----|-------|-------------------------------------------------------------------------------------------------------|------|-------------|-----|
|     |       | UNIT - I                                                                                              |      |             |     |
| 1   | •     | Discuss about the basic techniques in Natural Language Processing (OR)                                | 12M  | <b>C</b> 01 | 1,2 |
| 2   | . (a) |                                                                                                       | 6M   | C01         | L3  |
|     | (b)   |                                                                                                       | 6M   | C01         | 1.2 |
| 3.  |       | Explain in detail about various applications of Topic Modeling.                                       | 12M  | CO2         | 1.2 |
|     |       | (OR)                                                                                                  |      |             |     |
| 4.  | (a)   | Explain about Extraction- based summarization methods in detail.                                      | 6M   | CO2         | 1.2 |
|     | (b)   | Define semantic analysis and explain how sentiment polarity predication has been done in text mining. | 6M   | CO2         | LI  |
|     |       | UNIT – III                                                                                            |      |             |     |
| 5.  | (a)   | Analyze the necessity to have time series data and discuss about time series statistical models.      | 6M   | CO3         | L4  |
|     | (b)   | Briefly explain about measure of Correlation in time series.                                          | 6M   | CO3         | L3  |
|     |       | (OR)                                                                                                  |      |             |     |
| 6.  |       | Discuss about Time series Regression & Exploratory Data Analysis in detail.                           | 12M  | CO3         | L4  |
|     |       | UNIT – IV                                                                                             |      |             |     |
| 7.  | (a)   | Explain the working functionalities of Autoregressive moving average models.                          | 6M   | CO4         | L2  |
|     | (b)   | Demonstrate how Integrated models for nonstationary data is evaluated using ARIMA.                    | 6M   | CO4         | L3  |
|     |       | (OR)                                                                                                  |      |             |     |
| 8.  | (a)   | Discuss about Autocorrelation and partial autocorrelation models in detail.                           | 6M   | CO4         | L4  |
| ٠.  | (b)   | Explain the procedure to Building ARIMA models.                                                       | 6M   |             |     |
|     | (0)   |                                                                                                       | OIVI | CO4         | L2  |
| 9.  |       | UNIT-V Give the working procedure and functionalities of Periodogram and Discrete Fourier transform.  | 12M  | CO5         | L1  |
|     |       | (OR)                                                                                                  |      |             |     |
| 10. |       | Discuss about Lagged Regression models in detail.                                                     | 12M  | CO5         | L3  |